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Empirical age-specific fecundity distributions are often based on small samples
and hence include high levels of sampling error, particularly at the older ages.
One solution to this problem is to smooth the distributions using appropriate mod-
els. The aim of this article is to compare the utility of three models for smoothing
and/or graduating these distributions. The three models examined are 1) the Gamma
distribution, 2) the Hadwiger function, and 3) the Brass polynomial. Test data sets
consist of four types of primates (including humans), Asian elephants, and
Przewalski’s horse (an extinct species). The results indicate that all three models
work well with a variety of mammalian data. The simplest of these models, the
Brass polynomial, cannot be rejected based on available data and appears to be
the optimum choice. Zoo Biol 20:487–499, 2001. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Accurate demographic rates for mortality, fecundity, and migration are neces-
sary to evaluate the population dynamics of an endangered species. These estimates
are useful to determine whether the size of a population is growing or declining in
the wild, and to evaluate alternative management strategies in captivity. Unfortu-
nately, good demographic estimates on endangered species are not generally avail-
able. First, data sets for these populations are generally small. As a consequence of
the small sample sizes, the resulting rates are imprecise. Second, there may be errors
in aging and/or observation of vital events (births, deaths, and migrations). Conse-
quently, the resulting rates may be biased. In general, errors in the data tend to be
less severe for captive populations where close observation is possible and more
severe for populations in the wild where close observation is difficult. In any event,
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the conventional methods of estimating population dynamics, that is, methods based
on stable population theory [Coale, 1972], will amplify any errors in the underlying
demographic rates. There are alternative methods of estimating population dynamics
[see Gage 1995 for an application of these methods to Przewalski’s horse]. However,
even the alternative methods require some of the same data as conventional approaches
and thus have some of the same problems.

Human demographers faced with these same problems of demographic estima-
tion for the less developed countries have developed model demographic systems to
improve estimates of mortality, fertility, and migration. The modeling strategy di-
vides the problem into two parts: the level of the vital rate (mortality, fecundity, and
migration) and the age pattern of the vital rate. In general, it is age patterns that
require large data sets to estimate because the sample must be broken down by age
and sex. When large data sets are not available, the strategy used in human demogra-
phy is to use a model life table or model fecundity table to establish the shape of the
distribution and to use the observed data to estimate the level of the vital rate. One of
the obvious problems associated with this methodology is choosing the appropriate
age pattern of mortality, fecundity, or migration. Nevertheless, it appears to be the
best approach for improving demographic estimates that is currently available.

Model mortality systems have been developed for some nonhuman popula-
tions, particularly the primates [Gage and Dyke, 1988; Dyke et al., 1993, 1995; Gage,
1998]. Model fecundity systems are not as well developed [Gage, 1995, 1998]. The
aim of this article is to test, on a variety of nonhuman populations, several math-
ematical distributions that have been used for modeling human fecundity data. This
article crosses the human demographic and biological literature. Consequently, it is
necessary to define several common terms. Because this article appears in the bio-
logical literature the biological terminology will be followed, that is, fecundity refers
to realized births, while fertility refers to the capacity to reproduce. The human de-
mographic literature reverses these terms.

Mammalian age patterns of fecundity are thought to fall into two types, those
displaying reproductive senescence, and those that do not senesce (Fig. 1). In gen-
eral, mammalian fecundity displays a significant prereproductive period followed by
a rapid increase in fecundity with age to a maximum and finally a decline. It is
argued that some mammals do not display the decline in fertility at the older ages,
that is, there is no senescent phase [Caughly, 1977 for sheep and Promislow, 1991
for mysticete whales]. Conversely, in at least one species (Homo sapiens), there is a
menopause followed by a significant postreproductive phase. Because the general
methods examined here are borrowed from the human demographic literature, only
the senescent pattern of fecundity will be considered. One of the difficulties with
modeling the age patterns of fecundity in nonhuman mammals is that all mammals
appear to senesce with respect to mortality, but do not have significant post-
reproductive phases [Caughly, 1977; Gage, 1995; Gage, 1998]. Consequently, the
age pattern of fecundity at the older ages is particularly difficult to estimate precisely
because the number of animals exposed to the risk of a birth is always very small
(few survive to these ages). Thus, age-specific fecundities at the oldest ages incorpo-
rate a very large random error. In fact, the lack of evidence for reproductive senes-
cence in the mammals where reproductive senescence is thought not to occur might
be because of this problem.

The models of age-specific fecundity developed for human populations fall
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into two or three types: 1) models based on empirical data, 2) mathematical density
functions, and 3) combinations of empirical data and mathematical functions. Appli-
cations in human demography frequently use models based on empirical data or a
combination of empirical data and mathematical functions. This approach requires
large amounts of high-quality data to define the characteristic shape of the age-spe-
cific fecundity curve. Such data are available for human populations and are en-
hanced by combining the results across several well-documented populations. As a
consequence, random variation in the age-specific fecundity rates are minimized,
and the characteristics of the human fecundity curve are well known. Similar empiri-
cal data are more difficult to obtain for most other mammalian populations, because
of the problems mentioned herein. Furthermore, empirical models must be constructed
individually for each species or at least separately for organisms with largely differ-
ent life history characteristics. Thus, the models examined here are all based on math-
ematical density functions that can be used to smooth empirically obtained age-specific
fecundity distributions derived from small populations.

Methods of smoothing human fecundity distributions have been compared re-
cently by Hoem et al. [1981] using contemporary Danish fecundity data. They exam-
ined several methods that do not rely completely on empirical data including 1) cubic
splines, 2) the Hadwiger function, 3) the Gamma density, 4) the Beta density, 5) the
Brass polynomial, and 6) the Gompertz function. Hoem et al. [1981] also examined
several variations of the methods just listed, which are dependent on empirical data.
One of these is the Coale and Trussell [1974] procedure, which is perhaps the most
widely used method in human demography. Hoem et al. [1981] compared the fit of

Fig. 1. The two mammalian patterns of age-specific fecundity. The solid line represents the reproduc-
tive senescent pattern, and the dashed line represents the nonsenescent reproductive pattern.
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all of these methods to contemporary Danish fecundity and concluded the following:
the cubic spline provides the best fit; the Coale-Trussell procedure, Gamma density,
and Hadwiger function were second but still fit the data well, whereas the Beta den-
sity, the Brass polynomial, and the Gompertz function were less accurate [Hoem et
al., 1981]. Here the application of the Gamma density, the Hadwiger function, and
the Brass polynomial are extended to several nonhuman mammalian populations. I
have excluded 1) the cubic spline because it requires good underlying empirical data;
2) the Coale-Trussell procedure because it requires good empirical model fecundity
schedules, which are currently unavailable for nonhuman mammal populations; and
3) the Beta and Gompertz functions because they do not fit contemporary human
fecundity distributions well. I have included the Brass polynomial despite the less
accurate fits reported by Hoem et al. [1981] because this procedure provides param-
eter values that are directly interpretable with respect to life history characteristics,
and because it has been used to smooth nonhuman fecundity distributions previously
[Gage, 1995, 1998].

METHODS

The Gamma distribution, modified for fecundity analysis is:
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for x > d, and where x is age, c is the level of fecundity (measured as a “total fertility
rate,” TFR, the number of offspring ever born to a female that survives to the end of
the reproductive period), d is the length of the prereproductive period, and Γ(b1) is
the gamma function of b1. In this model, the parameters b1+2 have no particular de-
mographic interpretation. In general, the gamma distribution is thought to provide a
slightly better fit to human fecundity distributions than the Hadwiger function [Hoem
et al., 1981].

The Hadwiger function is an adaptation of the inverse Gaussian or Wald den-
sity. It is
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for x > b1 where, x is age, c is the level of fecundity (again measured as a TFR), but
the parameters b1 , b2, and b3 have no particular demographic interpretation. A com-
mon problem with the Hadwiger function, at least for fitting contemporary Danish
(human) fecundity distributions, is a tendency to overestimate fecundity at the oldest
fertile ages [Hoem et al., 1981].

The Brass polynomial is a simple third-degree polynomial. More complex ad-
aptations of this model have been developed by Brass [1975] and Hoem et al. [1981];
however, these adaptations generally require empirical model fecundity tables. The
Brass polynomial is defined here as
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For x > d and x < (d + w), and where x is age, c is a measure of the level of fecundity
(but cannot be interpreted as the TFR), d is the lower age at fecundity, and w is the
length of the reproductive period [Gage, 1995, 1998].

All three functions are fitted using the same nonlinear least-squares fitting rou-
tine [Velleman, 1997]. This routine uses the Fletcher method of minimization, which
uses numerical (as opposed to analytical) derivatives. In all cases the “loss” function
is defined as the sum of the squared error (sse). The statistically appropriate model is
also identified from sse. Comparisons of the Gamma and Hadwiger functions, which
have the same number of parameters, can be based directly on sses. Comparisons of
the Brass polynomial (three parameters) with the Gamma or Hadwiger functions
(four parameters) were carried out using an F-test based on a likelihood ratio [Gal-
lant, 1987]. This is
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where sser and ssef are the sums of the squared errors for the reduced model (Brass
polynomial), and the full model (the Gamma or Hadwiger), respectively, and n is the
number of data points. There are 1 numerator degrees of freedom and n – 4 denomi-
nator degrees of freedom.

The data used for illustrating and testing the three methods of smoothing and/
or graduating fecundity distributions are not a representative sample of mammalian
populations. These data sets were chosen primarily on the basis of their availability
to the author. Overall, the sample consists largely of primates (including two human
fecundity distributions), although several other populations are also presented:
Przewalski’s horse and Asian elephants (Table 1). The primate data were used in a
recent comparison of primate life history characteristics [Gage, 1998].

Human fecundity patterns are frequently classified into two types: “natural”
and “controlled” fecundity. This dichotomy is considered to account for most of the
variation in human age patterns of fecundity. In human affairs, “natural” fecundity is

TABLE 1. Fecundity data

Type of Length of No. of age
Population  populationa  age interval (yr)  intervals Source

Marmosets (various) n 1 14 Unpublished datab

M. mulatta (rhesus) c 1 28 Dyke et al., 1986
Pan t (chimpanzee) n 4 9 Sugiyama, 1994
Homo s. Costa Rica 1966 n 5 8 Keyfitz and Fleiger, 1971
Homo s. Sweden 1967 c 5 9 Keyfitz and Fleiger, 1971
Przewalski’s horse c 1 21 Gage, 1995
Asian elephants c 4 10 Unpublished datac

aType of population; c, controlled; n, natural.
bThese are based on data concerning Callithrix jaccus, Saguinus fuscicollis, and Saguinus oedipus at
the Oak Ridge Associated Universities Marmoset Research Center.
cThese are based on data collected from the North American Stud Book.
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defined as the fecundity observed in the absence of behaviors consciously intended
to limit fecundity, whereas “controlled” fecundity is defined as the fecundity ob-
served in the presence of behaviors consciously intended to limit fecundity [Henry,
1961]. For example, the use of contraceptives to limit exposure to risk of fecundity
would result in “controlled” fecundity. By these definitions, the observed fecundity
of nonhuman animals is generally “natural.” However, among captive animals, cag-
ing decisions by human managers (consciously or unconsciously) may limit the ex-
posure of risk of females and hence limit their fecundity. Thus, the samples used
here are classified into two types, “natural” and “controlled,” depending on whether
human interference (in this case conscious or unconscious) could have limited fe-
cundity. The problem of exposure to risk could be controlled statistically where ex-
posure to risk is documented; however, currently there are few data sets (human or
nonhuman), that include accurate information on exposure to risk. The classification
of the samples is included in Table 1. I have classified the marmosets as “natural”
because these data represent an active attempt to accommodate marmosets to captiv-
ity. Fecundity in captivity of these species is relatively low; hence, it is likely that
every attempt was made to maximize the birth rate of this population given the cap-
tive environment [Gage, 1998].

RESULTS

All three methods provide reasonably close fits to the data (Tables 2–4, and Figs.
2 and 3). Based on absolute mean square error , the Gamma function appears to give
the best results (Table 5). It provides the closest fit in four of the seven cases and is
second best in all other cases. However, formal statistical tests indicate that in general,
the more complex Gamma and Hadwiger functions are not statistically justifiable (Table
6). The F-tests indicate that the simpler Brass polynomial (three parameters) can only
be rejected in favor of the more complex Hadwiger and Gamma models at the P < 0.05
level for the Swedish fecundity data. If Bonferroni’s adjustment (a conservative cor-
rection for multiple tests) is applied across the seven comparisons, then the Brass poly-
nomial cannot be rejected even for the Swedish fecundity distribution.

Absolute goodness of fit is only one criterion for evaluating the utility of a
model. For those models for which the parameters have some interpretable demo-
graphic or biological meaning, the values of the parameters can also be considered.
The Gamma and Hadwiger functions both parameterize the TFR, that is, the number
of offspring ever born to mothers surviving throughout the entire reproductive span.
The Brass polynomial also provides a parameter representing the level of fecundity,

TABLE 2. Parameters of the Gamma distribution

Population ca b1 b2 d Loss

Marmoset 7.367 2.340 2.755 1.225 0.07706575
Rhesus 7.206 3.007 4.612 1.478 0.04707600
Chimpanzee 6.760 1.592 10.214 12.612 0.01615345
Costa Rica 6.704 6.094 3.538 8.651 0.00433433
Sweden 2.298 12.918 1.708 4.927 0.00002265
Przewalski’s horse 9.653 2.508 5.211 1.074 0.14301433
Asian elephants 1.115 3.214 5.560 2.437 0.00072285

ac is interpretable as a total fertility rate.
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c. However, this parameter is not interpretable as a TFR (Table 4) as is the human
demographic convention. The estimates of TFR for the Brass polynomial presented
in Table 4 were computed by numerical integration of equation 3 between d and d +
w. In general, TFR estimates of all three models are similar; however, the TFRs
estimated by the Brass polynomial are consistently lower than those of the Gamma
and Hadwiger functions (Tables 2–4). This is largely because of differences in fe-
cundity estimates of the three models at the older ages (Figs. 2 and 3). The Brass
polynomial generally provides lower fecundity estimates at these ages.

The Gamma density and Brass polynomial both include a parameter that might
be considered the “age of maturity.” The standard life history definition of age at
maturity is the mean age at first birth [Stearns, 1992]. However, both models provide
estimates of age at maturity as the earliest age of significant reproduction. Using this
later definition, the Brass polynomial appears to provide the most reasonable esti-
mate. Comparisons of the value of the parameter representing “age of maturity” with
the minimum age of first birth in the observed data indicate that the Brass polyno-
mial provides the best estimate in three cases, whereas the Gamma provides the best
estimate in two cases. In the two remaining cases, the models provide very similar
results. In one of these, Asian elephants, the estimate of both the Gamma and Brass
models is far too low, approximately 2 years, whereas the first observed birth occurs
between ages 8 and 12 years.

The Brass Polynomial model also parameterizes the length of the reproductive
period. In this case, the length of the reproductive span is estimated as the difference
between the age at which fecundity exceeds zero (earliest age of significant repro-
duction) and the age (older than the earliest age of significant reproduction) at which
fertility again reaches zero. This estimate is consistent with the life history definition

TABLE 3. Parameters of the Hadwiger distribution

Population ca b2 b3 b1 Loss

Marmoset 7.591 1.233 8.579 –0.498 0.08241881
Rhesus 7.229 1.789 20.429 –5.182 0.05209716
Chimpanzee 7.185 1.002 22.779 6.972 0.01587748
Costa Rica 6.726 2.587 32.307 –2.132 0.00462435
Sweden 2.302 3.738 32.678 –5.673 0.00002430
Przewalski’s horse 9.716 1.535 18.482 –4.337 0.15036234
Asian elephants 0.963 0.751 17.557 10.000 0.00246622

ac is interpretable as a total fertility rate.

TABLE 4. Parameters of the Brass polynomial

Population ca d w Loss TFR

Marmoset 1.750e-3 0.938 14.690 0.12129878 6.791
Rhesus 1.125e-4 2.220 29.044 0.03975706 6.671
Chimpanzee 2.770e-5 9.129 40.515 0.02773600 6.220
Costa Rica 4.590e-5 15.181 35.947 0.00186213 6.387
Sweden 2.455e-5 14.809 32.836 0.00214561 2.378
Przewalski’s horse 1.890e-4 1.125 27.146 0.14540089 8.552
Asian elephants 5.710e-6 2.098 38.811 0.00088270 1.080

ac is a measure of the level of fecundity but not interpretable as a total fertility rate (TFR). TFR is
computed by numerical integration of the Brass polynomial between d and d + w.
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Fig. 2. The three models (dashed line) fit to the observed Prizwalski’s horse fecundity distribution
(solid line). a: The gamma distribution. b: The Hadwiger function. c: The Brass polynomial.
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Fig. 3. The three models (dashed line) fit to the observed rhesus fecundity distribution (solid line). a:
The Gamma distribution. b: The Hadwiger function. c: The Brass polynomial.
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of the maximum reproductive lifespan [Stearns, 1992]. However, the concept of a
maximum reproductive lifespan is only meaningful for mammals that display repro-
ductive senescence. The estimates for humans (approximately 35 years) appear rea-
sonable (Table 4), but little comparable data are available for the other species. In all
cases, the Brass polynomial provides an estimate of age at the end of the reproduc-
tive career that is greater than the observed age at oldest birth in the data analyzed
here. However, the Gamma and Hadwiger models both consistently predict higher
fecundity at the older ages, as already noted here, and hence longer reproductive
lifespans compared to the Brass polynomial (Figs. 2 and 3). Thus, the Brass polyno-
mial appears to describe the biological characteristics of the observed fecundity dis-
tributions better than the alternative models, and provides a more conservative (lower)
estimate of the level of fecundity.

DISCUSSION

This comparison of methods of modeling age-specific fecundity for a variety of
mammalian populations is limited by the lack of good fecundity data for a variety of
species under a variety of environmental conditions. Ideally, accurate data should be
used to test the validity of the mathematical models. Unfortunately, accurate data are
commonly available only for humans. The data currently available for other animals
are limited by the problems of observing demographic events for animals living in
the wild or by the potential effects of caging arrangements on fecundity in captivity.

TABLE 5. Goodness of fit based on the sum of the squared error

Population Brass polynomial Hadwiger Gamma

Marmoset 0.121299 0.082419 0.077066a

Rhesus 0.039757a 0.052097 0.047076
Chimpanzee 0.027736 0.015877a 0.016153
Costa Rica 0.001862a 0.004624 0.004334
Sweden 0.002146 0.000024 0.000023a

Przewalski’s horse 0.145401 0.150362 0.143014a

Asian elephants 0.000883 0.002466 0.000723a

Mean 0.048440 0.043982 0.041198

aBest fit from among the three models.

TABLE 6. Values of F based on a likelihood ratio

P value for
Population Brass vs. Hadwiger Brass vs. Gamma dfa  Brass vs. Gammab

Costa Rica 0.149 0.143 4 0.725
Sweden 17.459 18.746 5 0.008
Marmoset 0.048 0.057 10 0.815
Rhesus 0.010 0.006 24 0.937
Chimpanzee 0.149 0.143 5 0.720
Przewalski’s horse 0.002 0.001 17 0.975
Asian elephants 0.107 0.037 6 0.854

aThese are denominator degrees of freedom, numerator degrees of freedom is 1 in all cases.
bP < 0.007 is necessary to reject the Brass model with Bonferroni’s adjustment (a correction for mul-
tiple tests).
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The present study is based on the limited data that are currently available. It is
likely that these data underestimate the natural level of fecundity of the species ex-
amined in the environments in which they are observed. Observations in the wild
will underestimate the level of fecundity because births may be overlooked, particu-
larly those births that die at an early age. In captivity, caging arrangements are likely
to reduce the exposure to risk of fecundity of at least some females and hence reduce
the observed fecundity rates. The wild versus captive environment is also likely to
influence the level of fecundity, with captive animals displaying lower or higher
fertility, depending on whether the species does or does not adapt well to captivity.

Bias in the shape of the age-specific fecundity distribution may occur in both
wild and captive populations. In wild populations, age may not be well established;
in fact, reproductive status might be used to infer age and hence bias the “observed”
age distribution of births [see, for example, Sugiyama, 1994]. In captivity, where age
is likely to be better established, animal managers may bias age-specific fecundity
rates, consciously or unconsciously, by making caging decisions on the basis of age
or the achieved fecundity of a female. For example, older females might not be ex-
posed to the risk of fecundity as continuously if managers assume that they would
not be productive anyway. Additional data collection and research will be necessary
to evaluate the significance of these potential problems.

Conversely, human age patterns of fecundity are remarkably uniform despite
extensive self-manipulation of fecundity rates. In general, the only significant varia-
tion in the age patterns of fecundity are thought to be caused by “natural” versus
“controlled” fecundity [Coale and Trussell, 1974]. Controlled fecundity is character-
istic of modern populations, where fecundity is curtailed after a certain number of
births are achieved. These differences are reflected in the Costa Rican (natural) and
Swedish (controlled) fecundity distributions (Fig. 4). In this regard, the results pre-

Fig. 4. The Costa Rican data smoothed with the Brass polynomial (solid line) represent the “natural”
fecundity pattern and the Swedish data smoothed with the gamma distribution (dashed line) represent
the “controlled” fecundity pattern.
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sented herein tend to confirm the finding that the Gamma distribution fits modern
Danish fecundity (controlled) best [Hoem et al., 1981]. However, the results do not
support the conclusion reached by Hoem et al. [1981] that the Gamma provides the
best fit to human fecundity distributions in general. The Brass polynomial fits the
Costa Rican (natural) fecundity distribution better. Given that human age patterns of
fecundity are relatively uniform despite high levels of self-manipulation, it is pos-
sible that the mammalian fecundity data examined here are similarly resistant to the
potential limitations and bias discussed herein.

CONCLUSIONS

Lacking better data, the data currently available are assumed to reflect the char-
acteristic shape of the age-specific fecundity distribution, and any deviations from
this distribution are caused by random sampling error. If this is true, then it is pos-
sible to select the mathematical model that best fits mammalian age-specific fecun-
dity distributions (for those species that display reproductive senescence) and use it
for improving age-specific estimates of fecundity. Based on currently available data,
there is no reason to reject the simple Brass polynomial as a method of smoothing
and/or graduating age-specific data. This conclusion should be considered prelimi-
nary and regularly reviewed as additional and hopefully better-quality data become
available. Nevertheless, the Brass polynomial currently appears to be the optimum
method for several reasons: 1) it is the simplest of the models, 2) statistical tests
indicate that it cannot be eliminated as an adequate fit to the available data, and 3) it
provides parameter estimates that are interpretable as standard life history character-
istics, i.e., length of the prereproductive and the reproductive periods. Finally, the
Brass polynomial provides the most conservative estimate of TFR and hence is least
likely to overestimate the security of an endangered species.
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